fuel-main/netcheck.py

332 lines
11 KiB
Python

# Copyright 2013 Mirantis, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
#!/usr/bin/env python
import random
import logging
import itertools
logging.basicConfig()
logger = logging.getLogger()
class Vertex(object):
def __init__(self, node, interface):
self.node = node
self.interface = interface
def __str__(self):
return "<Vtx: %s.%s>" % (self.node, self.interface)
def __repr__(self):
return self.__str__()
def __eq__(self, other):
return self.node == other.node and self.interface == other.interface
def __ne__(self, other):
return self.node != other.node or self.interface != other.interface
def __hash__(self):
return hash(str(self))
class Arc(object):
def __init__(self, vertex_a, vertex_b):
self.arc = (vertex_a, vertex_b)
def __str__(self):
return "<Arc: %s>" % (self.arc,)
def __repr__(self):
return self.__str__()
def __getitem__(self, i):
return self.arc[i]
def __eq__(self, other):
l = map(lambda x, y: x == y, self.arc, other.arc)
return bool(filter(lambda x: x, l))
def __ne__(self, other):
l = map(lambda x, y: x != y, self.arc, other.arc)
return bool(filter(lambda x: x, l))
def __hash__(self):
return hash(str(self))
def invert(self):
return Arc(self.arc[1], self.arc[0])
class NetChecker(object):
def __init__(self, nodes, arcs):
self.nodes = nodes
self.arcs = arcs
logger.debug("Init: got %d nodes and %d arcs", len(nodes), len(self.arcs))
@staticmethod
def _invert_arc(arc):
return arc[1], arc[0]
@staticmethod
def _create_arc(a_vertex, b_vertex):
return a_vertex, b_vertex
@staticmethod
def _disassm_vertex(vertex):
index = vertex.find('.')
node = vertex[:index]
interface = vertex[index + 1:]
return node, interface
@staticmethod
def _assm_vertex(node, interface):
return "%s.%s" % (str(node), str(interface))
def get_topos(self):
""" Main method to collect all possible altermatives of
interconnection.
"""
topos = []
vertices = set([i[0] for i in self.arcs])
logger.debug("Get_choices: start with %d vertices", len(vertices))
while vertices:
logger.debug("")
vertex = vertices.pop()
logger.debug("Get_choices: entry vertex is %s", vertex)
good_topos, visited_vertices = self._calc_topo(vertex)
logger.debug("Get_choices: getted %d good_topos",
len(good_topos))
logger.debug("Get_choices: getted %d visited_vertices: %s",
len(visited_vertices), visited_vertices)
topos.extend(good_topos)
vertices.difference_update(visited_vertices)
logger.debug("Get_choices: %d untracked vertices left: %s",
len(vertices), vertices)
return self._uniq_topos(topos)
def _calc_topo(self, start_vertex):
topos = []
visited_vertices = set()
def extend_arcs_to_check(arcs_to_check, arcs):
for failed_v, ignored_v in arcs:
existed_arcs = filter(
lambda x: x[0] == failed_v, arcs_to_check)
if existed_arcs:
existed_arc = existed_arcs[0]
existed_arc[1].append(ignored_v)
else:
arcs_to_check.append((failed_v, [ignored_v]))
# arcs_to_check consists of arcs (x, y) where
# x - failed vertex,
# y - list of vertices which should be ignored.
arcs_to_check = [(start_vertex, [])]
for fv, ignored_vertices in arcs_to_check:
found_vertices = [fv]
failed_arcs = []
for vertex in found_vertices:
neighbors = self._get_neighbors(vertex)
logger.debug("_calc_topo: for vtx %s a neigbors found: %s",
vertex, neighbors)
new_vertices, absent_vertices = self._diff_lists(
found_vertices, ignored_vertices, neighbors
)
logger.debug("_calc_topo: new vtx found: %s", new_vertices)
logger.debug("_calc_topo: absent_vertices is %s",
absent_vertices)
if absent_vertices:
for v in absent_vertices:
failed_arc = (v, vertex)
if failed_arc not in failed_arcs:
failed_arcs.append(failed_arc)
found_vertices.extend(new_vertices)
failed_vertices = [x[0] for x in failed_arcs]
topo = self._validate_topo(found_vertices, failed_vertices)
visited_vertices.update(found_vertices)
visited_vertices.update(failed_vertices)
if topo:
topos.append(topo)
extend_arcs_to_check(arcs_to_check, failed_arcs)
return topos, visited_vertices
def _get_neighbors(self, vertex):
arcs = filter(
lambda x: x[0] == vertex,
self.arcs)
return [x[1] for x in arcs]
@staticmethod
def _diff_lists(found_vertices, ignored_vertices, neighbours):
new_vertices = []
absent_vertices = []
for n in found_vertices:
if n in neighbours:
neighbours.remove(n)
else:
absent_vertices.append(n)
new_vertices = [n for n in neighbours if n not in ignored_vertices]
return new_vertices, absent_vertices
def _validate_topo(self, found_v, failed_v):
logger.debug("_validate_topo: found_vertices is: %s", found_v)
logger.debug("_validate_topo: failed_vertices is: %s", failed_v)
topo = {}
for v in found_v:
if v in failed_v:
continue
node, interface = self._disassm_vertex(v)
interfaces = topo.get(node)
if interfaces:
interfaces.append(interface)
else:
topo[node] = [interface]
if set(self.nodes) != set(topo.keys()):
return None
for l in topo.values():
l.sort()
return topo
def _uniq_topos(self, topos):
def isincluded(topo, topos):
for at in topos:
included = True
for n in self.nodes:
if not set(topo[n]).issubset(set(at[n])):
included = False
if included:
return True
return False
copy = []
logger.debug("_uniq_topos: topos is %s" % topos)
for t in topos:
logger.debug("_uniq_topos: now testing: %s" % t)
if not isincluded(t, [i for i in topos if id(i) != id(t)]):
copy.append(t)
return copy
class ClassbasedNetChecker(NetChecker):
@staticmethod
def _invert_arc(arc):
return arc.invert()
@staticmethod
def _create_arc(a_vertex, b_vertex):
return Arc(a_vertex, b_vertex)
@staticmethod
def _disassm_vertex(vertex):
return vertex.node, vertex.interface
@staticmethod
def _assm_vertex(node, interface):
return Vertex(node, interface)
def generateFullMesh(nodes, interfaces, Klass, stability=1.0):
A = []
vertices = itertools.product(nodes, interfaces, nodes, interfaces)
for n1, i1, n2, i2 in vertices:
# Drop some arcs if stability < 1.0
if stability == 1.0 or random.random() < stability:
a_vertex = Klass._assm_vertex(n1, i1)
b_vertex = Klass._assm_vertex(n2, i2)
arc = Klass._create_arc(a_vertex, b_vertex)
A.append(arc)
logger.debug("generateArcs: %d arcs generated", len(A))
return A
def generateMesh(nodes1, ifaces1, nodes2, ifaces2, Klass, stability=1.0):
A = []
vertices = itertools.product(nodes1, ifaces1, nodes2, ifaces2)
for n1, i1, n2, i2 in vertices:
# Drop some arcs if stability < 1.0
if stability == 1.0 or random.random() < stability:
a_vertex = Klass._assm_vertex(n1, i1)
b_vertex = Klass._assm_vertex(n2, i2)
arc = Klass._create_arc(a_vertex, b_vertex)
A.append(arc)
logger.debug("generateArcs: %d arcs generated", len(A))
return A
def printChoice(choice, step=4):
def printlist(l, indent=0, step=2):
print '%s[' % (' ' * indent)
for i in l:
if type(i) is dict:
print '%s-' % (' ' * indent)
printdict(i, indent + step, step)
elif type(i) in (list, tuple):
printlist(i, indent + step, step)
else:
print '%s- %s' % (' ' * indent, str(i))
print '%s]' % (' ' * indent)
def printdict(d, indent=0, step=2):
for k, v in d.iteritems():
if type(v) is dict:
print '%s%s:' % (' ' * indent, str(k))
printdict(v, indent + step, step)
elif type(v) in (list, tuple):
print '%s%s:' % (' ' * indent, str(k))
printlist(v, indent + step, step)
else:
print '%s%s: %s' % (' ' * indent, str(k), str(v))
if type(choice) is dict:
printdict(choice, step=step)
elif type(choice) is list:
printlist(choice, step=step)
else:
print choice
print ""
nodes = ['s1', 's2', 's3', 's4']
interfaces = ['i0', 'i1', 'i2', 'i3']
logger.setLevel(logging.DEBUG)
Klass = ClassbasedNetChecker
Klass = NetChecker
arcs = []
# arcs.extend(generateFullMesh(nodes[:2], interfaces[:2], Klass, 0.9))
# #arcs.extend(generateFullMesh(nodes[:2], interfaces[2:], Klass))
# arcs.extend(generateMesh(nodes[2:3], interfaces[0:1],
# nodes[:3], interfaces[0:2], Klass))
# arcs.extend(generateMesh(nodes[:2], interfaces[0:2],
# nodes[2:3], interfaces[0:1], Klass))
# netcheck = Klass(nodes[:3], arcs)
nodes = [str(i) for i in xrange(200)]
interfaces = [str(i) for i in xrange(4)]
arcs = generateFullMesh(nodes, interfaces, Klass)
netcheck = Klass(nodes, arcs)
logger.setLevel(logging.INFO)
choices = netcheck.get_topos()
#printChoice(arcs)
# print ""
# for i in xrange(len(choices)):
# print "\n---- Choice number %d: ----\n" % (i + 1)
# printChoice(choices[i])
if not choices:
print "No choices found"
else:
print "%d choices found" % len(choices)
print ""
#import time
#time.sleep(5)