deb-python-autobahn/autobahn/util.py

381 lines
11 KiB
Python

###############################################################################
#
# The MIT License (MIT)
#
# Copyright (c) Tavendo GmbH
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
###############################################################################
from __future__ import absolute_import
import time
import random
import sys
import re
import six
from datetime import datetime, timedelta
from pprint import pformat
if six.PY3:
# Python 3
# noinspection PyShadowingBuiltins
xrange = range
__all__ = ("utcnow",
"parseutc",
"utcstr",
"id",
"newid",
"rtime",
"Stopwatch",
"Tracker",
"EqualityMixin")
def utcnow():
"""
Get current time in UTC as ISO 8601 string.
:returns: Current time as string in ISO 8601 format.
:rtype: unicode
"""
now = datetime.utcnow()
return now.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + "Z"
def utcstr(ts):
"""
Format UTC timestamp in ISO 8601 format.
:param ts: The timestamp to format.
:type ts: instance of :py:class:`datetime.datetime`
:returns: Timestamp formatted in ISO 8601 format.
:rtype: unicode
"""
if ts:
return ts.strftime("%Y-%m-%dT%H:%M:%S.%f")[:-3] + "Z"
else:
return ts
def parseutc(datestr):
"""
Parse an ISO 8601 combined date and time string, like i.e. ``"2011-11-23T12:23:00Z"``
into a UTC datetime instance.
.. deprecated:: 0.8.12
Use the **iso8601** module instead (e.g. ``iso8601.parse_date("2014-05-23T13:03:44.123Z")``)
:param datestr: The datetime string to parse.
:type datestr: unicode
:returns: The converted datetime object.
:rtype: instance of :py:class:`datetime.datetime`
"""
try:
return datetime.strptime(datestr, "%Y-%m-%dT%H:%M:%SZ")
except ValueError:
return None
# noinspection PyShadowingBuiltins
def id():
"""
Generate a new random object ID from range **[0, 2**53]**.
The upper bound **2**53** is chosen since it is the maximum integer that can be
represented as a IEEE double such that all smaller integers are representable as well.
Hence, IDs can be safely used with languages that use IEEE double as their
main (or only) number type (JavaScript, Lua, etc).
:returns: A random object ID.
:rtype: int
"""
# return random.randint(0, 9007199254740992) # this is what the WAMP spec says
return random.randint(0, 2147483647) # use a reduced ID space for now (2**31-1)
def newid(length=16):
"""
Generate a new random object ID.
:param length: The length (in chars) of the ID to generate.
:type length: int
:returns: A random object ID.
:rtype: str
"""
return ''.join([random.choice("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_") for _ in xrange(length)])
# Select the most precise walltime measurement function available
# on the platform
##
if sys.platform.startswith('win'):
# On Windows, this function returns wall-clock seconds elapsed since the
# first call to this function, as a floating point number, based on the
# Win32 function QueryPerformanceCounter(). The resolution is typically
# better than one microsecond
_rtime = time.clock
_ = _rtime() # this starts wallclock
else:
# On Unix-like platforms, this used the first available from this list:
# (1) gettimeofday() -- resolution in microseconds
# (2) ftime() -- resolution in milliseconds
# (3) time() -- resolution in seconds
_rtime = time.time
rtime = _rtime
"""
Precise wallclock time.
:returns: The current wallclock in seconds. Returned values are only guaranteed
to be meaningful relative to each other.
:rtype: float
"""
class Stopwatch(object):
"""
Stopwatch based on walltime.
This can be used to do code timing and uses the most precise walltime measurement
available on the platform. This is a very light-weight object,
so create/dispose is very cheap.
"""
def __init__(self, start=True):
"""
:param start: If ``True``, immediately start the stopwatch.
:type start: bool
"""
self._elapsed = 0
if start:
self._started = rtime()
self._running = True
else:
self._started = None
self._running = False
def elapsed(self):
"""
Return total time elapsed in seconds during which the stopwatch was running.
:returns: The elapsed time in seconds.
:rtype: float
"""
if self._running:
now = rtime()
return self._elapsed + (now - self._started)
else:
return self._elapsed
def pause(self):
"""
Pauses the stopwatch and returns total time elapsed in seconds during which
the stopwatch was running.
:returns: The elapsed time in seconds.
:rtype: float
"""
if self._running:
now = rtime()
self._elapsed += now - self._started
self._running = False
return self._elapsed
else:
return self._elapsed
def resume(self):
"""
Resumes a paused stopwatch and returns total elapsed time in seconds
during which the stopwatch was running.
:returns: The elapsed time in seconds.
:rtype: float
"""
if not self._running:
self._started = rtime()
self._running = True
return self._elapsed
else:
now = rtime()
return self._elapsed + (now - self._started)
def stop(self):
"""
Stops the stopwatch and returns total time elapsed in seconds during which
the stopwatch was (previously) running.
:returns: The elapsed time in seconds.
:rtype: float
"""
elapsed = self.pause()
self._elapsed = 0
self._started = None
self._running = False
return elapsed
class Tracker(object):
"""
A key-based statistics tracker.
"""
def __init__(self, tracker, tracked):
"""
"""
self.tracker = tracker
self.tracked = tracked
self._timings = {}
self._offset = rtime()
self._dt_offset = datetime.utcnow()
def track(self, key):
"""
Track elapsed for key.
:param key: Key under which to track the timing.
:type key: str
"""
self._timings[key] = rtime()
def diff(self, startKey, endKey, formatted=True):
"""
Get elapsed difference between two previously tracked keys.
:param startKey: First key for interval (older timestamp).
:type startKey: str
:param endKey: Second key for interval (younger timestamp).
:type endKey: str
:param formatted: If ``True``, format computed time period and return string.
:type formatted: bool
:returns: Computed time period in seconds (or formatted string).
:rtype: float or str
"""
if endKey in self._timings and startKey in self._timings:
d = self._timings[endKey] - self._timings[startKey]
if formatted:
if d < 0.00001: # 10us
s = "%d ns" % round(d * 1000000000.)
elif d < 0.01: # 10ms
s = "%d us" % round(d * 1000000.)
elif d < 10: # 10s
s = "%d ms" % round(d * 1000.)
else:
s = "%d s" % round(d)
return s.rjust(8)
else:
return d
else:
if formatted:
return "n.a.".rjust(8)
else:
return None
def absolute(self, key):
"""
Return the UTC wall-clock time at which a tracked event occurred.
:param key: The key
:type key: str
:returns: Timezone-naive datetime.
:rtype: instance of :py:class:`datetime.datetime`
"""
elapsed = self[key]
if elapsed is None:
raise KeyError("No such key \"%s\"." % elapsed)
return self._dt_offset + timedelta(seconds=elapsed)
def __getitem__(self, key):
if key in self._timings:
return self._timings[key] - self._offset
else:
return None
def __iter__(self):
return self._timings.__iter__()
def __str__(self):
return pformat(self._timings)
class EqualityMixin(object):
"""
Mixing to add equality comparison operators to a class.
Two objects are identical under this mixin, if and only if:
1. both object have the same class
2. all non-private object attributes are equal
"""
def __eq__(self, other):
"""
Compare this object to another object for equality.
:param other: The other object to compare with.
:type other: obj
:returns: ``True`` iff the objects are equal.
:rtype: bool
"""
if not isinstance(other, self.__class__):
return False
# we only want the actual message data attributes (not eg _serialize)
for k in self.__dict__:
if not k.startswith('_'):
if not self.__dict__[k] == other.__dict__[k]:
return False
return True
# return (isinstance(other, self.__class__) and self.__dict__ == other.__dict__)
def __ne__(self, other):
"""
Compare this object to another object for inequality.
:param other: The other object to compare with.
:type other: obj
:returns: ``True`` iff the objects are not equal.
:rtype: bool
"""
return not self.__eq__(other)
def wildcards2patterns(wildcards):
"""
Compute a list of regular expression patterns from a list of
wildcard strings. A wildcard string uses '*' as a wildcard character
matching anything.
:param wildcards: List of wildcard strings to compute regular expression patterns for.
:type wildcards: list of str
:returns: Computed regular expressions.
:rtype: list of obj
"""
return [re.compile(wc.replace('.', '\.').replace('*', '.*')) for wc in wildcards]