
Test Plan for SwiftStack Fuel Plugin
Release 0.3-0.3.0-1

SwiftStack Inc.

June 16, 2016

Contents

1 Revision history 2

2 SwiftStack Fuel Plugin 2
2.1 Use SwiftStack On-Premises Controller . 2
2.2 Use SwiftStack Public Controller (Platform) . 3

3 Developer’s specification 4

4 Limitations 4

5 Test strategy 4
5.1 Types of tests included . 4
5.2 Types of tests not included . 4
5.3 Acceptance criteria . 4
5.4 Test environment and infrastructure . 5
5.5 Product compatibility matrix . 5

6 Check Swift API endpoints 5

7 Basic Swift APIs operation 5

8 System testing 6
8.1 Install plugin and deploy environment . 6
8.2 Install plugin and deploy environment with Swift API hostname . 7
8.3 Modifying env with enabled plugin (removing/adding controller nodes) 8
8.4 Modifying env with enabled plugin (removing/adding compute node) 9
8.5 Fuel create mirror and update (setup) of core repos . 10
8.6 Uninstall of plugin in the deployed environment . 11
8.7 Uninstall of plugin in the non-deployed environment . 12
8.8 Apply maintenance updates to deployed environment . 12

9 Appendix 13

1 Revision history

Version Revision Date Editor Comment
1.0 27.08.2015 Charles Hsu(chsu@swiftstack.com) Created
2.0 06.07.2016 Charles Hsu(chsu@swiftstack.com) Revised for Fuel 8.0
2.1 06.15.2016 Charles Hsu(chsu@swiftstack.com) Update contents and rewrite in RST

2 SwiftStack Fuel Plugin

Allow Mirantis OpenStack environment able to use an existing Swift cluster managed by SwiftStack Controller. Swift-
Stack plugin will disable the swift cluster deployed in the nodes are role Controller or Primary-controller. And then
reconfigures API endpoints, keystone and glance settings to point an existing SwiftStack Swift cluster.

Here are two basic Fuel OpenStack environments as follows:

2.1 Use SwiftStack On-Premises Controller

Please setup an On-Premises SwiftStack controller first, and then setup a single node Swift cluster with SwiftStack
controller, here is our quick start guide.

• 1 SwiftStack On-Premises controller

• 1 Swift cluster (single node)

Also prepare a Fuel environment using Slave nodes according to the Fuel Install Guide.

Note: In this diagram, the Swift cluster is also connected to Fuel Storage network for SwiftStack cluster-
facing and data replication network, if you have performance concern, please consider to separate Swift
cluster-facing and data replication network out of Fuel networks. That prevents network starvation on
Fuel Storage network when Swift service daemons are moving data or clients upload large data into the
Swift cluster.

Also, SwiftStack Nodes need to communicate with the On-Premises controller over Fuel Management
network, so please make sure the On-Premises controller also connected to Fuel Management network.
You can run a CLI command ssdiag on SwiftStack nodes to check the connectivity between SwiftStack
Nodes and Controller.

mailto:chsu@swiftstack.com
mailto:chsu@swiftstack.com
mailto:chsu@swiftstack.com
https://swiftstack.com/docs/install/index.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-install-guide.html

2.2 Use SwiftStack Public Controller (Platform)

Please setup a single node Swift cluster with our public controller, here is our quick start guide.

• 1 Swift cluster (single node)

Also prepare a Fuel environment using Slave nodes according to the Fuel Install Guide.

Note: In this diagram, the Swift cluster is also connected to Fuel Storage network for SwiftStack cluster-
facing and data replication network, if you have performance concern, please consider to separate Swift
cluster-facing and data replication network out of Fuel networks. That prevents network starvation on
Fuel Storage network when Swift service daemons are moving data or clients upload large data into the
Swift cluster.

Also, SwiftStack Nodes need to communicate with SwiftStack Public controller over Fuel Public network,
so please make sure SwiftStack Nodes able to reach Internet.

https://swiftstack.com/docs/install/index.html
http://docs.openstack.org/developer/fuel-docs/userdocs/fuel-install-guide.html

3 Developer’s specification

See developers specification in this repository: https://github.com/openstack/fuel-plugin-swiftstack

4 Limitations

The plugin only supports a running SwiftStack Swift cluster and it able to reach from the OpenStack environment.
Make sure you have the correct network configuration for the Swift cluster and Mirantis OpenStack environment
before you enable this plugin.

5 Test strategy

5.1 Types of tests included

• Check Swift API endpoints

• Basic Swift APIs operations

• System Tests

5.2 Types of tests not included

• Swift cluster operations

5.3 Acceptance criteria

These tests should be pass:

• Check Swift API endpoints

• Basic Swift APIs operation

https://github.com/openstack/fuel-plugin-swiftstack

• System Tests

5.4 Test environment and infrastructure

Before install the plugin to your fuel environment, make sure you have a running SwiftStack Swift cluster managed
by SwiftStack Platform controller or On-Premises controller. You’ll need to configure few middlewares from the
controller and push configuration to the SwiftStack cluster.

• A running SwiftStack Swift cluster

5.5 Product compatibility matrix

Issue Version
Mirantis OpenStack 8.0

6 Check Swift API endpoints

• Swift API endpoint should be like http[s]://<SWIFT_API_IP_or_HOSTNAME>:[80|443]/v1/KEY_%(tenant_id)s

– Disable TLS with Swift endpoint

* http://<SWIFT_API_IP_or_HOSTNAME>:80/v1/KEY_%(tenant_id)s

– Enable TLS with Swift endpoint

* https://<SWIFT_API_IP_or_HOSTNAME>:443/v1/KEY_%(tenant_id)s

7 Basic Swift APIs operation

1. Verify Swift account with Keystone authentication.

Login to one of nodes of Swift cluster.

Test admin account
root@node-23:~$ cat rc.admin
export ST_AUTH=http://192.168.0.2:5000/v2.0
export ST_USER=admin:admin
export ST_KEY=admin
export ST_AUTH_VERSION=2

~$ source rc.admin

~$ swift stat
Account: KEY_8408a5a799364d06b81542a8017e7975

Containers: 0
Objects: 0
Bytes: 0

X-Put-Timestamp: 1465289155.00899
X-Timestamp: 1465289155.00899
X-Trans-Id: tx1d35d328e5294c88baf5e-00575689c2

Content-Type: text/plain; charset=utf-8

2. Upload/download object and check md5sum

http:/
https:/

~$ swift upload test rc.admin
rc.admin

~$ swift stat test rc.admin
Account: KEY_8408a5a799364d06b81542a8017e7975

Container: test
Object: rc.admin

Content Type: application/octet-stream
Content Length: 117
Last Modified: Tue, 07 Jun 2016 08:46:16 GMT

ETag: 4a97d36410af1b380fe5b014a6cd8db5
Meta Mtime: 1465288847.821181

Accept-Ranges: bytes
X-Timestamp: 1465289175.47789
X-Trans-Id: tx13823ad38c084e529c20d-00575689de

~$ swift download test rc.admin -o rc.admin.download
rc.admin [auth 1.171s, headers 1.452s, total 1.460s, 0.000 MB/s]

~$ md5sum rc.admin*
4a97d36410af1b380fe5b014a6cd8db5 rc.admin
4a97d36410af1b380fe5b014a6cd8db5 rc.admin.download

8 System testing

8.1 Install plugin and deploy environment

Test Case ID install_plugin_deploy_env
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Create an environment with enabled plugin in the Fuel Web UI.
5. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
6. Finalize environment configuration (e.g. networking, nodes interfaces).
7. Run network verification check.
8. Deploy the cluster.
9. Run OSTF.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. OSTF tests (Health Checks) are passed.
4. Environment is deployed successfully.

8.2 Install plugin and deploy environment with Swift API hostname

Test Case ID install_plugin_deploy_env_with_swift_hostname
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Create an environment with enabled plugin in the Fuel Web UI.
5. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
6. Finalize environment configuration (e.g. networking, nodes interfaces).
7. Run network verification check.
8. Enabled Swift API hostname in the plugin section
9. Deploy the cluster.

10. Run OSTF.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. OSTF tests (Health Checks) are passed.
4. Environment is deployed successfully.

8.3 Modifying env with enabled plugin (removing/adding controller nodes)

Test Case ID modify_env_with_plugin_remove_add_controller
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Create an environment with enabled plugin in the Fuel Web UI.
5. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
6. Finalize environment configuration (e.g. networking, nodes interfaces).
7. Enable the plugin and configure it following the instructions from the Plugin Guide.
8. Run network verification check.
9. Deploy the cluster.

10. Run OSTF.
11. Remove 1 node with Controller role
12. Re-deploy the cluster.
13. Run OSTF.
14. Add 1 new node with Controller role.
15. Re-deploy the cluster.
16. Run OSTF.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. OSTF tests (Health Checks) are passed.
5. Environment is deployed successfully.
6. When adding/removing Controller node (where plugin-related services are run):

(a) all plugins resources are migrated to another Controller node
(b) the environment is redeployed successfully when adding/removing Controller

node.

8.4 Modifying env with enabled plugin (removing/adding compute node)

Test Case ID modify_env_with_plugin_remove_add_compute
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Create an environment with enabled plugin in the Fuel Web UI.
5. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
6. Finalize environment configuration
7. Enable the plugin and configure it following the instructions from the Plugin Guide.
8. Run network verification check.
9. Deploy the cluster.

10. Run OSTF.
11. Add 1 new node with Compute role.
12. Re-deploy the cluster.
13. Run OSTF.
14. Remove 1 node with Compute role
15. Re-deploy the cluster.
16. Run OSTF.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. OSTF tests (Health Checks) are passed.
5. Environment is deployed successfully.
6. When adding/removing Compute node (where plugin-related services are run):

(a) all plugins resources are migrated to another Compute node
(b) the environment is re-deployed successfully when adding/removing Compute

node

8.5 Fuel create mirror and update (setup) of core repos

Test Case ID Fuel_create_mirror_update_core_repos
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Create an environment with enabled plugin in the Fuel Web UI.
5. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
6. Finalize environment configuration (e.g. networking, nodes interfaces).
7. Enable the plugin and configure it following the instructions from the Plugin Guide.
8. Run network verification check.
9. Deploy the cluster.

10. Run OSTF.
11. Go in cli through controller / compute / storage /etc nodes and get pid of services which

were launched by plugin and store them.
12. Launch the following command on the Fuel Master node:

fuel-createmirror -M
13. Launch the following command on the Fuel Master node:

(a) For MOS < 8.0:
fuel –env <ENV_ID> node –node-id <NODE_ID1> <NODE_ID2>
<NODE_ID_N> –tasks upload_core_repos

(b) For MOS 8.0:
fuel –env <ENV_ID> node –node-id <NODE_ID1> <NODE_ID2>
<NODE_ID_N> –tasks setup_repositories

14. Go to controller/plugin/storage node and check if plugin’s services are alive and aren’t
changed their pid.

15. Check with fuel nodes command that all nodes are remain in ready status.
16. Rerun OSTF.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. OSTF tests (Health Checks) are passed.
5. Environment is deployed successfully.
6. Plugin’s services shouldn’t be restarted after corresponding task was executed. If they

are restarted as some exception, this information should be added to plugin’s User
Guide.

7. Cluster (nodes) should remain in ready state.
8. OSTF test should be passed on rerun.

8.6 Uninstall of plugin in the deployed environment

Test Case ID uninstall_plugin_with_deployed_env
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
5. Finalize environment configuration (e.g. networking, nodes interfaces).
6. Enable the plugin and configure it following the instructions from the Plugin Guide.
7. Run network verification check.
8. Deploy the cluster.
9. Run OSTF.

10. Uninstall the plugin with running fuel plugins --remove
<plugin-name>==<plugin_version> (e.g. 1.0.1)‘

Ensure that the following output appears in CLI: “400 Client Error: Bad Request (Can’t
delete plugin which is enabled for some environment.)”

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. OSTF tests (Health Checks) are passed.
5. Environment is deployed successfully.
6. Alert is displayed when trying the uninstall the plugin.

8.7 Uninstall of plugin in the non-deployed environment

Test Case ID uninstall_plugin
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Add 3 nodes with Controller role and 1 node with Compute and Cinder role.
5. Finalize environment configuration (e.g. networking, nodes interfaces).
6. Enable the plugin and configure it following the instructions from the Plugin Guide.
7. Run network verification check.
8. Delete listed environment
9. Uninstall the plugin with running fuel plugins --remove

<plugin-name>==<plugin_version> (e.g. 1.0.1) for more de-
tails.

10. Install the plugin.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. When uninstalling the plugin, no plugin-related elements are left in the environment

(e.g. UI elements disappear, Nailgun database is restored to the default state, no output
for command fuel plugins --list).

8.8 Apply maintenance updates to deployed environment

Mirantis OpenStack features the ability to receive patches via the common flow called Maintenance Updates. Please
reach out to Partner Enablement team about the latest Maintenance Updates portion to test against with you plugin.

https://docs.mirantis.com/openstack/fuel/fuel-8.0/maintenance-updates.html#mu8-0-how-to-update

Test Case ID apply_mu
Steps

1. Copy the plugin to the Fuel Master node
2. Install the plugin.
3. Ensure that plugin is installed successfully with running fuel plugins --list

command in the Fuel CLI.
4. Add 3 nodes with Controller role and 1 node with Compute and cinder role.
5. Finalize environment configuration (e.g. networking, nodes interfaces).
6. Enable the plugin and configure it following the instructions from the Plugin Guide.
7. Run network verification check.
8. Deploy the cluster.
9. Run OSTF.

10. Once environment is deployed, apply maintenance updates following the instructions.
11. Check is plugin services continue running.
12. Make sure all nodes are in ready state and no regression is observed.
13. Run OSTF checks.

Expected Result
1. Plugin is installed successfully at the Fuel Master node and the corresponding output

appears in the CLI.
2. Cluster is created and network verification check is passed.
3. Plugin is enabled and configured in the Fuel Web UI.
4. OSTF tests (Health Checks) are passed.
5. Environment is deployed successfully.
6. Maintenance Updates do not affect running services related to the plugin (e.g. the

services aren’t restarted).
7. Cluster remains in the fully operational state after applying Maintenance Updates.

9 Appendix

Resource title

	Revision history
	SwiftStack Fuel Plugin
	Use SwiftStack On-Premises Controller
	Use SwiftStack Public Controller (Platform)

	Developer’s specification
	Limitations
	Test strategy
	Types of tests included
	Types of tests not included
	Acceptance criteria
	Test environment and infrastructure
	Product compatibility matrix

	Check Swift API endpoints
	Basic Swift APIs operation
	System testing
	Install plugin and deploy environment
	Install plugin and deploy environment with Swift API hostname
	Modifying env with enabled plugin (removing/adding controller nodes)
	Modifying env with enabled plugin (removing/adding compute node)
	Fuel create mirror and update (setup) of core repos
	Uninstall of plugin in the deployed environment
	Uninstall of plugin in the non-deployed environment
	Apply maintenance updates to deployed environment

	Appendix

