docs/doc/source/deploy_install_guides/r5_release/bare_metal/controller_storage_install_...

863 lines
31 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. _controller_storage_install_kubernetes_r5:
===============================================================
Install Kubernetes Platform on Standard with Controller Storage
===============================================================
.. contents::
:local:
:depth: 1
.. only:: starlingx
This section describes the steps to install the StarlingX Kubernetes
platform on a **StarlingX R5.0 Standard with Controller Storage**
deployment configuration.
-------------------
Create bootable USB
-------------------
Refer to :ref:`Bootable USB <bootable_usb>` for instructions on how to
create a bootable USB with the StarlingX ISO on your system.
--------------------------------
Install software on controller-0
--------------------------------
.. include:: inc-install-software-on-controller.rest
:start-after: incl-install-software-controller-0-standard-start
:end-before: incl-install-software-controller-0-standard-end
--------------------------------
Bootstrap system on controller-0
--------------------------------
.. incl-bootstrap-sys-controller-0-standard-start:
#. Login using the username / password of "sysadmin" / "sysadmin".
When logging in for the first time, you will be forced to change the
password.
::
Login: sysadmin
Password:
Changing password for sysadmin.
(current) UNIX Password: sysadmin
New Password:
(repeat) New Password:
#. Verify and/or configure IP connectivity.
External connectivity is required to run the Ansible bootstrap playbook. The
StarlingX boot image will |DHCP| out all interfaces so the server may have
obtained an IP address and have external IP connectivity if a |DHCP| server
is present in your environment. Verify this using the :command:`ip addr` and
:command:`ping 8.8.8.8` commands.
Otherwise, manually configure an IP address and default IP route. Use the
PORT, IP-ADDRESS/SUBNET-LENGTH and GATEWAY-IP-ADDRESS applicable to your
deployment environment.
.. code-block:: bash
sudo ip address add <IP-ADDRESS>/<SUBNET-LENGTH> dev <PORT>
sudo ip link set up dev <PORT>
sudo ip route add default via <GATEWAY-IP-ADDRESS> dev <PORT>
ping 8.8.8.8
#. Specify user configuration overrides for the Ansible bootstrap playbook.
Ansible is used to bootstrap StarlingX on controller-0. Key files for
Ansible configuration are:
``/etc/ansible/hosts``
The default Ansible inventory file. Contains a single host: localhost.
``/usr/share/ansible/stx-ansible/playbooks/bootstrap.yml``
The Ansible bootstrap playbook.
``/usr/share/ansible/stx-ansible/playbooks/host_vars/bootstrap/default.yml``
The default configuration values for the bootstrap playbook.
``sysadmin home directory ($HOME)``
The default location where Ansible looks for and imports user
configuration override files for hosts. For example:
``$HOME/<hostname>.yml``.
.. only:: starlingx
.. include:: ../ansible_install_time_only.txt
Specify the user configuration override file for the Ansible bootstrap
playbook using one of the following methods:
#. Use a copy of the default.yml file listed above to provide your overrides.
The default.yml file lists all available parameters for bootstrap
configuration with a brief description for each parameter in the file
comments.
To use this method, copy the default.yml file listed above to
``$HOME/localhost.yml`` and edit the configurable values as desired.
#. Create a minimal user configuration override file.
To use this method, create your override file at ``$HOME/localhost.yml``
and provide the minimum required parameters for the deployment
configuration as shown in the example below. Use the OAM IP SUBNET and IP
ADDRESSing applicable to your deployment environment.
.. code-block:: bash
cd ~
cat <<EOF > localhost.yml
system_mode: duplex
dns_servers:
- 8.8.8.8
- 8.8.4.4
external_oam_subnet: <OAM-IP-SUBNET>/<OAM-IP-SUBNET-LENGTH>
external_oam_gateway_address: <OAM-GATEWAY-IP-ADDRESS>
external_oam_floating_address: <OAM-FLOATING-IP-ADDRESS>
external_oam_node_0_address: <OAM-CONTROLLER-0-IP-ADDRESS>
external_oam_node_1_address: <OAM-CONTROLLER-1-IP-ADDRESS>
admin_username: admin
admin_password: <admin-password>
ansible_become_pass: <sysadmin-password>
EOF
.. only:: starlingx
In either of the above options, the bootstrap playbooks default
values will pull all container images required for the |prod-p| from
Docker hub.
If you have setup a private Docker registry to use for bootstrapping
then you will need to add the following lines in $HOME/localhost.yml:
.. only:: partner
.. include:: /_includes/install-kubernetes-bootstrap-playbook.rest
:start-after: docker-reg-begin
:end-before: docker-reg-end
.. code-block:: yaml
docker_registries:
quay.io:
url: myprivateregistry.abc.com:9001/quay.io
docker.elastic.co:
url: myprivateregistry.abc.com:9001/docker.elastic.co
gcr.io:
url: myprivateregistry.abc.com:9001/gcr.io
k8s.gcr.io:
url: myprivateregistry.abc.com:9001/k8s.gcr.io
docker.io:
url: myprivateregistry.abc.com:9001/docker.io
defaults:
type: docker
username: <your_myprivateregistry.abc.com_username>
password: <your_myprivateregistry.abc.com_password>
# Add the CA Certificate that signed myprivateregistry.abc.coms
# certificate as a Trusted CA
ssl_ca_cert: /home/sysadmin/myprivateregistry.abc.com-ca-cert.pem
See :ref:`Use a Private Docker Registry <use-private-docker-registry-r5>`
for more information.
.. only:: starlingx
If a firewall is blocking access to Docker hub or your private
registry from your StarlingX deployment, you will need to add the
following lines in $HOME/localhost.yml (see :ref:`Docker Proxy
Configuration <docker_proxy_config>` for more details about Docker
proxy settings):
.. only:: partner
.. include:: /_includes/install-kubernetes-bootstrap-playbook.rest
:start-after: firewall-begin
:end-before: firewall-end
.. code-block:: bash
# Add these lines to configure Docker to use a proxy server
docker_http_proxy: http://my.proxy.com:1080
docker_https_proxy: https://my.proxy.com:1443
docker_no_proxy:
- 1.2.3.4
Refer to :ref:`Ansible Bootstrap Configurations
<ansible_bootstrap_configs_r5>` for information on additional Ansible
bootstrap configurations for advanced Ansible bootstrap scenarios.
#. Run the Ansible bootstrap playbook:
::
ansible-playbook /usr/share/ansible/stx-ansible/playbooks/bootstrap.yml
Wait for Ansible bootstrap playbook to complete.
This can take 5-10 minutes, depending on the performance of the host machine.
.. incl-bootstrap-sys-controller-0-standard-end:
----------------------
Configure controller-0
----------------------
.. incl-config-controller-0-storage-start:
#. Acquire admin credentials:
::
source /etc/platform/openrc
#. Configure the |OAM| interface of controller-0 and specify the
attached network as "oam".
The following example configures the |OAM| interface on a physical untagged
ethernet port, use the |OAM| port name that is applicable to your deployment
environment, for example eth0:
.. code-block:: bash
OAM_IF=<OAM-PORT>
system host-if-modify controller-0 $OAM_IF -c platform
system interface-network-assign controller-0 $OAM_IF oam
To configure a vlan or aggregated ethernet interface, see :ref:`Node
Interfaces <node-interfaces-index>`.
#. Configure the MGMT interface of controller-0 and specify the attached
networks of both "mgmt" and "cluster-host".
The following example configures the MGMT interface on a physical untagged
ethernet port, use the MGMT port name that is applicable to your deployment
environment, for example eth1:
.. code-block:: bash
MGMT_IF=<MGMT-PORT>
# De-provision loopback interface and
# remove mgmt and cluster-host networks from loopback interface
system host-if-modify controller-0 lo -c none
IFNET_UUIDS=$(system interface-network-list controller-0 | awk '{if ($6=="lo") print $4;}')
for UUID in $IFNET_UUIDS; do
system interface-network-remove ${UUID}
done
# Configure management interface and assign mgmt and cluster-host networks to it
system host-if-modify controller-0 $MGMT_IF -c platform
system interface-network-assign controller-0 $MGMT_IF mgmt
system interface-network-assign controller-0 $MGMT_IF cluster-host
To configure a vlan or aggregated ethernet interface, see :ref:`Node
Interfaces <node-interfaces-index>`.
#. Configure |NTP| servers for network time synchronization:
::
system ntp-modify ntpservers=0.pool.ntp.org,1.pool.ntp.org
To configure |PTP| instead of |NTP|, see :ref:`PTP Server Configuration
<ptp-server-config-index>`.
#. If required, configure Ceph storage backend:
A persistent storage backend is required if your application requires |PVCs|.
.. only:: openstack
.. important::
The StarlingX OpenStack application **requires** |PVCs|.
::
system storage-backend-add ceph --confirmed
.. only:: openstack
*************************************
OpenStack-specific host configuration
*************************************
.. important::
These steps are required only if the |prod-os| application
(|prefix|-openstack) will be installed.
#. **For OpenStack only:** Assign OpenStack host labels to controller-0 in
support of installing the stx-openstack manifest and helm-charts later.
::
system host-label-assign controller-0 openstack-control-plane=enabled
#. **For OpenStack only:** Configure the system setting for the vSwitch.
.. only:: starlingx
StarlingX has |OVS| (kernel-based) vSwitch configured as default:
* Runs in a container; defined within the helm charts of stx-openstack
manifest.
* Shares the core(s) assigned to the platform.
If you require better performance, |OVS-DPDK| (|OVS| with the Data
Plane Development Kit, which is supported only on bare metal hardware)
should be used:
* Runs directly on the host (it is not containerized).
Requires that at least 1 core be assigned/dedicated to the vSwitch
function.
To deploy the default containerized |OVS|:
::
system modify --vswitch_type none
This does not run any vSwitch directly on the host, instead, it uses
the containerized |OVS| defined in the helm charts of stx-openstack
manifest.
To deploy |OVS-DPDK|, run the following command:
.. parsed-literal::
system modify --vswitch_type |ovs-dpdk|
Once vswitch_type is set to |OVS-DPDK|, any subsequent |AIO|-controller
or worker nodes created will default to automatically assigning 1 vSwitch
core for |AIO| controllers and 2 vSwitch cores (1 on each numa-node)
for compute-labeled worker nodes.
.. note::
After controller-0 is unlocked, changing vswitch_type requires
locking and unlocking controller-0 to apply the change.
.. incl-config-controller-0-storage-end:
-------------------
Unlock controller-0
-------------------
Unlock controller-0 in order to bring it into service:
::
system host-unlock controller-0
Controller-0 will reboot in order to apply configuration changes and come into
service. This can take 5-10 minutes, depending on the performance of the host
machine.
-------------------------------------------------
Install software on controller-1 and worker nodes
-------------------------------------------------
#. Power on the controller-1 server and force it to network boot with the
appropriate BIOS boot options for your particular server.
#. As controller-1 boots, a message appears on its console instructing you to
configure the personality of the node.
#. On the console of controller-0, list hosts to see newly discovered
controller-1 host (hostname=None):
::
system host-list
+----+--------------+-------------+----------------+-------------+--------------+
| id | hostname | personality | administrative | operational | availability |
+----+--------------+-------------+----------------+-------------+--------------+
| 1 | controller-0 | controller | unlocked | enabled | available |
| 2 | None | None | locked | disabled | offline |
+----+--------------+-------------+----------------+-------------+--------------+
#. Using the host id, set the personality of this host to 'controller':
::
system host-update 2 personality=controller
This initiates the install of software on controller-1.
This can take 5-10 minutes, depending on the performance of the host machine.
#. While waiting for the previous step to complete, power on the worker nodes.
Set the personality to 'worker' and assign a unique hostname for each.
For example, power on worker-0 and wait for the new host (hostname=None) to
be discovered by checking 'system host-list':
::
system host-update 3 personality=worker hostname=worker-0
Repeat for worker-1. Power on worker-1 and wait for the new host
(hostname=None) to be discovered by checking 'system host-list':
::
system host-update 4 personality=worker hostname=worker-1
.. only:: starlingx
.. Note::
A node with Edgeworker personality is also available. See
:ref:`deploy-edgeworker-nodes` for details.
#. Wait for the software installation on controller-1, worker-0, and worker-1
to complete, for all servers to reboot, and for all to show as
locked/disabled/online in 'system host-list'.
::
system host-list
+----+--------------+-------------+----------------+-------------+--------------+
| id | hostname | personality | administrative | operational | availability |
+----+--------------+-------------+----------------+-------------+--------------+
| 1 | controller-0 | controller | unlocked | enabled | available |
| 2 | controller-1 | controller | locked | disabled | online |
| 3 | worker-0 | worker | locked | disabled | online |
| 4 | worker-1 | worker | locked | disabled | online |
+----+--------------+-------------+----------------+-------------+--------------+
----------------------
Configure controller-1
----------------------
.. incl-config-controller-1-start:
#. Configure the |OAM| interface of controller-1 and specify the
attached network of "oam".
The following example configures the |OAM| interface on a physical untagged
ethernet port, use the |OAM| port name that is applicable to your deployment
environment, for example eth0:
.. code-block:: bash
OAM_IF=<OAM-PORT>
system host-if-modify controller-1 $OAM_IF -c platform
system interface-network-assign controller-1 $OAM_IF oam
To configure a vlan or aggregated ethernet interface, see :ref:`Node
Interfaces <node-interfaces-index>`.
#. The MGMT interface is partially set up by the network install procedure;
configuring the port used for network install as the MGMT port and
specifying the attached network of "mgmt".
Complete the MGMT interface configuration of controller-1 by specifying the
attached network of "cluster-host".
::
system interface-network-assign controller-1 mgmt0 cluster-host
.. only:: openstack
*************************************
OpenStack-specific host configuration
*************************************
.. important::
This step is required only if the |prod-os| application
(|prefix|-openstack) will be installed.
**For OpenStack only:** Assign OpenStack host labels to controller-1 in
support of installing the stx-openstack manifest and helm-charts later.
::
system host-label-assign controller-1 openstack-control-plane=enabled
.. incl-config-controller-1-end:
-------------------
Unlock controller-1
-------------------
.. incl-unlock-controller-1-start:
Unlock controller-1 in order to bring it into service:
::
system host-unlock controller-1
Controller-1 will reboot in order to apply configuration changes and come into
service. This can take 5-10 minutes, depending on the performance of the host
machine.
.. incl-unlock-controller-1-end:
.. include:: /_includes/bootstrapping-and-deploying-starlingx.rest
----------------------
Configure worker nodes
----------------------
#. Add the third Ceph monitor to a worker node:
(The first two Ceph monitors are automatically assigned to controller-0 and
controller-1.)
::
system ceph-mon-add worker-0
#. Wait for the worker node monitor to complete configuration:
::
system ceph-mon-list
+--------------------------------------+-------+--------------+------------+------+
| uuid | ceph_ | hostname | state | task |
| | mon_g | | | |
| | ib | | | |
+--------------------------------------+-------+--------------+------------+------+
| 64176b6c-e284-4485-bb2a-115dee215279 | 20 | controller-1 | configured | None |
| a9ca151b-7f2c-4551-8167-035d49e2df8c | 20 | controller-0 | configured | None |
| f76bc385-190c-4d9a-aa0f-107346a9907b | 20 | worker-0 | configured | None |
+--------------------------------------+-------+--------------+------------+------+
#. Assign the cluster-host network to the MGMT interface for the worker nodes:
(Note that the MGMT interfaces are partially set up automatically by the
network install procedure.)
.. code-block:: bash
for NODE in worker-0 worker-1; do
system interface-network-assign $NODE mgmt0 cluster-host
done
.. only:: openstack
*************************************
OpenStack-specific host configuration
*************************************
.. important::
These steps are required only if the |prod-os| application
(|prefix|-openstack) will be installed.
#. **For OpenStack only:** Assign OpenStack host labels to the worker nodes in
support of installing the stx-openstack manifest and helm-charts later.
.. code-block:: bash
for NODE in worker-0 worker-1; do
system host-label-assign $NODE openstack-compute-node=enabled
system host-label-assign $NODE openvswitch=enabled
system host-label-assign $NODE sriov=enabled
done
#. **For OpenStack only:** Configure the host settings for the vSwitch.
If using |OVS-DPDK| vswitch, run the following commands:
Default recommendation for worker node is to use a single core on each
numa-node for |OVS-DPDK| vswitch. This should have been automatically
configured, if not run the following command.
.. code-block:: bash
for NODE in worker-0 worker-1; do
# assign 1 core on processor/numa-node 0 on worker-node to vswitch
system host-cpu-modify -f vswitch -p0 1 $NODE
# assign 1 core on processor/numa-node 1 on worker-node to vswitch
system host-cpu-modify -f vswitch -p1 1 $NODE
done
When using |OVS-DPDK|, configure 1G of huge pages for vSwitch memory on
each |NUMA| node where vswitch is running on the host. It is recommended
to configure 1x 1G huge page (-1G 1) for vSwitch memory on each |NUMA|
node where vswitch is running on host.
However, due to a limitation with Kubernetes, only a single huge page
size is supported on any one host. If your application |VMs| require 2M
huge pages, then configure 500x 2M huge pages (-2M 500) for vSwitch
memory on each |NUMA| node where vswitch is running on host.
.. code-block:: bash
for NODE in worker-0 worker-1; do
# assign 1x 1G huge page on processor/numa-node 0 on worker-node to vswitch
system host-memory-modify -f vswitch -1G 1 $NODE 0
# assign 1x 1G huge page on processor/numa-node 0 on worker-node to vswitch
system host-memory-modify -f vswitch -1G 1 $NODE 1
done
.. important::
|VMs| created in an |OVS-DPDK| environment must be configured to use
huge pages to enable networking and must use a flavor with the
property ``hw:mem_page_size=large``
Configure the huge pages for |VMs| in an |OVS-DPDK| environment on
this host, assuming 1G huge page size is being used on this host, with
the following commands:
.. code-block:: bash
for NODE in worker-0 worker-1; do
# assign 10x 1G huge page on processor/numa-node 0 on worker-node to applications
system host-memory-modify -f application -1G 10 $NODE 0
# assign 10x 1G huge page on processor/numa-node 1 on worker-node to applications
system host-memory-modify -f application -1G 10 $NODE 1
done
#. **For OpenStack only:** Setup disk partition for nova-local volume group,
needed for stx-openstack nova ephemeral disks.
.. code-block:: bash
for NODE in worker-0 worker-1; do
system host-lvg-add ${NODE} nova-local
# Get UUID of DISK to create PARTITION to be added to nova-local local volume group
# CEPH OSD Disks can NOT be used
# For best performance, do NOT use system/root disk, use a separate physical disk.
# List hosts disks and take note of UUID of disk to be used
system host-disk-list ${NODE}
# ( if using ROOT DISK, select disk with device_path of
# system host-show ${NODE} --nowrap | fgrep rootfs )
# Create new PARTITION on selected disk, and take note of new partitions uuid in response
# The size of the PARTITION needs to be large enough to hold the aggregate size of
# all nova ephemeral disks of all VMs that you want to be able to host on this host,
# but is limited by the size and space available on the physical disk you chose above.
# The following example uses a small PARTITION size such that you can fit it on the
# root disk, if that is what you chose above.
# Additional PARTITION(s) from additional disks can be added later if required.
PARTITION_SIZE=30
system hostdisk-partition-add -t lvm_phys_vol ${NODE} <disk-uuid> ${PARTITION_SIZE}
# Add new partition to nova-local local volume group
system host-pv-add ${NODE} nova-local <NEW_PARTITION_UUID>
sleep 2
done
#. **For OpenStack only:** Configure data interfaces for worker nodes.
Data class interfaces are vswitch interfaces used by vswitch to provide
|VM| virtio vNIC connectivity to OpenStack Neutron Tenant Networks on the
underlying assigned Data Network.
.. important::
A compute-labeled worker host **MUST** have at least one Data class
interface.
* Configure the data interfaces for worker nodes.
.. code-block:: bash
# Execute the following lines with
export NODE=worker-0
# and then repeat with
export NODE=worker-1
# List inventoried hosts ports and identify ports to be used as data interfaces,
# based on displayed linux port name, pci address and device type.
system host-port-list ${NODE}
# List hosts auto-configured ethernet interfaces,
# find the interfaces corresponding to the ports identified in previous step, and
# take note of their UUID
system host-if-list -a ${NODE}
# Modify configuration for these interfaces
# Configuring them as data class interfaces, MTU of 1500 and named data#
system host-if-modify -m 1500 -n data0 -c data ${NODE} <data0-if-uuid>
system host-if-modify -m 1500 -n data1 -c data ${NODE} <data1-if-uuid>
# Create Data Networks that vswitch 'data' interfaces will be connected to
DATANET0='datanet0'
DATANET1='datanet1'
system datanetwork-add ${DATANET0} vlan
system datanetwork-add ${DATANET1} vlan
# Assign Data Networks to Data Interfaces
system interface-datanetwork-assign ${NODE} <data0-if-uuid> ${DATANET0}
system interface-datanetwork-assign ${NODE} <data1-if-uuid> ${DATANET1}
*****************************************
Optionally Configure PCI-SRIOV Interfaces
*****************************************
#. **Optionally**, configure pci-sriov interfaces for worker nodes.
This step is **optional** for Kubernetes. Do this step if using |SRIOV|
network attachments in hosted application containers.
.. only:: openstack
This step is **optional** for OpenStack. Do this step if using |SRIOV|
vNICs in hosted application |VMs|. Note that pci-sriov interfaces can
have the same Data Networks assigned to them as vswitch data interfaces.
* Configure the pci-sriov interfaces for worker nodes.
.. code-block:: bash
# Execute the following lines with
export NODE=worker-0
# and then repeat with
export NODE=worker-1
# List inventoried hosts ports and identify ports to be used as pci-sriov interfaces,
# based on displayed linux port name, pci address and device type.
system host-port-list ${NODE}
# List hosts auto-configured ethernet interfaces,
# find the interfaces corresponding to the ports identified in previous step, and
# take note of their UUID
system host-if-list -a ${NODE}
# Modify configuration for these interfaces
# Configuring them as pci-sriov class interfaces, MTU of 1500 and named sriov#
system host-if-modify -m 1500 -n sriov0 -c pci-sriov ${NODE} <sriov0-if-uuid>
system host-if-modify -m 1500 -n sriov1 -c pci-sriov ${NODE} <sriov1-if-uuid>
# If not already created, create Data Networks that the 'pci-sriov'
# interfaces will be connected to
DATANET0='datanet0'
DATANET1='datanet1'
system datanetwork-add ${DATANET0} vlan
system datanetwork-add ${DATANET1} vlan
# Assign Data Networks to PCI-SRIOV Interfaces
system interface-datanetwork-assign ${NODE} <sriov0-if-uuid> ${DATANET0}
system interface-datanetwork-assign ${NODE} <sriov1-if-uuid> ${DATANET1}
* **For Kubernetes only:** To enable using |SRIOV| network attachments for
the above interfaces in Kubernetes hosted application containers:
* Configure the Kubernetes |SRIOV| device plugin.
.. code-block:: bash
for NODE in worker-0 worker-1; do
system host-label-assign $NODE sriovdp=enabled
done
* If planning on running |DPDK| in Kubernetes hosted application
containers on this host, configure the number of 1G Huge pages required
on both |NUMA| nodes.
.. code-block:: bash
for NODE in worker-0 worker-1; do
# assign 10x 1G huge page on processor/numa-node 0 on worker-node to applications
system host-memory-modify -f application $NODE 0 -1G 10
# assign 10x 1G huge page on processor/numa-node 1 on worker-node to applications
system host-memory-modify -f application $NODE 1 -1G 10
done
--------------------
Unlock worker nodes
--------------------
Unlock worker nodes in order to bring them into service:
.. code-block:: bash
for NODE in worker-0 worker-1; do
system host-unlock $NODE
done
The worker nodes will reboot in order to apply configuration changes and come into
service. This can take 5-10 minutes, depending on the performance of the host machine.
-----------------------------------------------------------------
If configuring Ceph Storage Backend, Add Ceph OSDs to controllers
-----------------------------------------------------------------
#. Add |OSDs| to controller-0. The following example adds |OSDs| to the `sdb` disk:
.. code-block:: bash
HOST=controller-0
# List host's disks and identify disks you want to use for CEPH OSDs, taking note of their UUID
# By default, /dev/sda is being used as system disk and can not be used for OSD.
system host-disk-list ${HOST}
# Add disk as an OSD storage
system host-stor-add ${HOST} osd <disk-uuid>
# List OSD storage devices and wait for configuration of newly added OSD to complete.
system host-stor-list ${HOST}
#. Add |OSDs| to controller-1. The following example adds |OSDs| to the `sdb` disk:
.. code-block:: bash
HOST=controller-1
# List host's disks and identify disks you want to use for CEPH OSDs, taking note of their UUID
# By default, /dev/sda is being used as system disk and can not be used for OSD.
system host-disk-list ${HOST}
# Add disk as an OSD storage
system host-stor-add ${HOST} osd <disk-uuid>
# List OSD storage devices and wait for configuration of newly added OSD to complete.
system host-stor-list ${HOST}
.. only:: starlingx
----------
Next steps
----------
.. include:: ../kubernetes_install_next.txt
.. only:: partner
.. include:: /_includes/72hr-to-license.rest